
Optimization Design
Patterns

12:15-13:05, Sat, 10th June 2023

50 minutes | Introductory Audience

Social: @MichaelShah
Web: mshah.io
Courses: courses.mshah.io
YouTube:
www.youtube.com/c/MikeShah

1

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah

Please do not redistribute slides without prior
permission.

2

Your Tour Guide for Today
by Mike Shah

● Associate Teaching Professor at Northeastern University in
Boston, Massachusetts.

○ I teach courses in computer systems, computer graphics, and game
engine development.

○ My research in program analysis is related to performance building
static/dynamic analysis and software visualization tools.

● I do consulting and technical training on modern C++,
DLang, Concurrency, OpenGL, and Vulkan projects

○ (Usually graphics or games related)

● I like teaching, guitar, running, weight training, and anything
in computer science under the domain of computer graphics,
visualization, concurrency, and parallelism.

● Contact information and more on: www.mshah.io
● More online training at courses.mshah.io 3

http://www.mshah.io
http://courses.mshah.io

Code for the talk

● Located here: https://github.com/MikeShah/Talks/tree/main/2023/2023_italian_cpp

4

https://github.com/MikeShah/Talks/tree/main/2023/2023_italian_cpp

Abstract

"Premature optimization is the root of all evil" is a saying credited to Donald Knuth
that speaks to many programmers with experience -- now anecdotally I have
observed folks overlooking the next sentence stating: "Yet we should not pass up
our opportunities in that critical 3%". In this talk, the audience will be introduced to
some common optimization design patterns. I will discuss precomputation, lazy
versus eager evaluation, batching, caching, specialization, hinting, hashing, and
using your compiler among 'optimization design patterns' that every programmer
should be aware of. Examples will be demonstrated in Modern C++, and the goal is
for the audience to leave feeling comfortable implementing each optimization
design pattern to improve performance of their code.

The abstract that you read and enticed
you to join me is here!

5

Question to Audience:

How many of you have heard this phrase?
(On the next slide...)

6

“premature optimization is the
root of all evil [or at least most

of it in programming].” -
Donald Knuth

7

Question to Audience:

How many of you have read Knuth’s Paper in
which this is quoted?

8

Structured Programming with go to Statements (1/3)

9

● The original paper is filled with lots of gems
(including the famous quoted statement)

Programmers waste enormous amounts of time
thinking about, or worrying about, the speed of
noncritical parts of their programs, and these attempts
at efficiency actually have a strong negative impact
when debugging and maintenance are considered. We
should forget about small efficiencies, say about 97%
of the time: premature optimization is the root of all
evil. Yet we should not pass up our opportunities in
that critical 3 %. A good programmer will not be lulled
into complacency by such reasoning, he will be wise to
look carefully at the critical code; but only after that
code has been identified. It is often a mistake to make
a priori judgments about what parts of a program are
really critical, since the universal experience of
programmers who have been using measurement tools
has been that their intuitive guesses fail. After working
with such tools for seven years, I've become convinced
that all compilers written from now on should be
designed to provide all programmers with feedback
indicating what parts of their programs are costing the
most; indeed, this feedback should be supplied
automatically unless it has been specific Mly turned o

Structured Programming with go to Statements (2/3)

10

● There’s also this one too right after!

Programmers waste enormous amounts of time
thinking about, or worrying about, the speed of
noncritical parts of their programs, and these attempts
at efficiency actually have a strong negative impact
when debugging and maintenance are considered. We
should forget about small efficiencies, say about 97%
of the time: premature optimization is the root of all
evil. Yet we should not pass up our opportunities
in that critical 3 %. A good programmer will not be
lulled into complacency by such reasoning, he will be
wise to look carefully at the critical code; but only after
that code has been identified. It is often a mistake to
make a priori judgments about what parts of a program
are really critical, since the universal experience of
programmers who have been using measurement tools
has been that their intuitive guesses fail. After working
with such tools for seven years, I've become convinced
that all compilers written from now on should be
designed to provide all programmers with feedback
indicating what parts of their programs are costing the
most; indeed, this feedback should be supplied
automatically unless it has been specific Mly turned o

Structured Programming with go to Statements (3/3)

11

● And where exactly to optimize

Programmers waste enormous amounts of time
thinking about, or worrying about, the speed of
noncritical parts of their programs, and these attempts
at efficiency actually have a strong negative impact
when debugging and maintenance are considered. We
should forget about small efficiencies, say about 97%
of the time: premature optimization is the root of all
evil. Yet we should not pass up our opportunities
in that critical 3 %. A good programmer will not be
lulled into complacency by such reasoning, he will be
wise to look carefully at the critical code; but only after
that code has been identified. It is often a mistake to
make a priori judgments about what parts of a
program are really critical, since the universal
experience of programmers who have been using
measurement tools has been that their intuitive
guesses fail. After working with such tools for seven
years, I've become convinced that all compilers written
from now on should be designed to provide all
programmers with feedback indicating what parts of
their programs are costing the most; indeed, this
feedback should be supplied automatically unless it
has been specific Mly turned o

“premature optimization is the
root of all evil” ‘But never

optimizing when the
opportunity is available is also

evil’

- This is how I paraphrase
Knuth to my students

12
(*Again, Knuth is not saying to never optimize)

(potentially bad if facing a new challenge)

Optimization is Tricky
(You’re going to see in my examples!)

13

More from Knuth [Original Paper link] (1/4)

(From Knuth’s paper)

14

This study focuses largely on two issues: (a)
improved syntax for iterations and error exits,
making it possible to write a larger class of
programs clearly and efficiently without go to
statements; (b) a methodology of program
design, beginning with readable and correct,
but possibly inefficient programs that are
systematically transformed if necessary into
efficient and correct, but possibly less
readable code.

http://web.archive.org/web/20130731202547/http://pplab.snu.ac.kr/courses/adv_pl05/papers/p261-knuth.pdf

More from Knuth [Original Paper link] (2/4)

● Optimization *might* result
in you making trade-offs
beyond space and time

○ e.g. readability,
maintainability, and
sometimes even
correctness/precision

15

This study focuses largely on two issues: (a)
improved syntax for iterations and error exits,
making it possible to write a larger class of
programs clearly and efficiently without go to
statements; (b) a methodology of program
design, beginning with readable and correct,
but possibly inefficient programs that are
systematically transformed if necessary into
efficient and correct, but possibly less
readable code.

http://web.archive.org/web/20130731202547/http://pplab.snu.ac.kr/courses/adv_pl05/papers/p261-knuth.pdf

More from Knuth [Original Paper link] (3/4)

● However, I might add,
sometimes the simplest
code is the most optimized!

○ It’s easiest for the hardware to
predict -- so we really have to
know the whole software and
hardware stack!

16

This study focuses largely on two issues: (a)
improved syntax for iterations and error exits,
making it possible to write a larger class of
programs clearly and efficiently without go to
statements; (b) a methodology of program
design, beginning with readable and correct,
but possibly inefficient programs that are
systematically transformed if necessary into
efficient and correct, but possibly less
readable code.

http://web.archive.org/web/20130731202547/http://pplab.snu.ac.kr/courses/adv_pl05/papers/p261-knuth.pdf

More from Knuth [Original Paper link] (2/4)

● However, I might add,
sometimes the simplest
code is the most optimized!

○ It’s easiest for the hardware to
predict -- so we really have to
know the whole software and
hardware stack!

17

This study focuses largely on two issues: (a)
improved syntax for iterations and error exits,
making it possible to write a larger class of
programs clearly and efficiently without go to
statements; (b) a methodology of program
design, beginning with readable and correct,
but possibly inefficient programs that are
systematically transformed if necessary into
efficient and correct, but possibly less
readable code.

● Will some patterns that I
demonstrate obfuscate and make
your code harder to read?

○ Maybe (though they are simple for
today’s introduction)

○ But hopefully you’ll become familiar
with some tools to help you choose
the right optimization strategy.

http://web.archive.org/web/20130731202547/http://pplab.snu.ac.kr/courses/adv_pl05/papers/p261-knuth.pdf

(Aside) CPU, Hard drive, and general Architecture

● This talk is too short to discuss how hardware works -- BUT there are some
great talks you could watch to get up to speed and are also performance
related

○ code::dive conference 2014 - Scott Meyers: Cpu Caches and Why You Care
■ https://www.youtube.com/watch?v=WDIkqP4JbkE

○ CppCon 2014: Mike Acton "Data-Oriented Design and C++"
■ https://www.youtube.com/watch?v=rX0ItVEVjHc

○ CppCon 2016: Timur Doumler “Want fast C++? Know your hardware!"
■ https://www.youtube.com/watch?v=BP6NxVxDQIs

○ CppCast Episode 287: Trading Systems with Carl Cook
■ https://youtu.be/nmIJqiOtWSs?t=948 (Specifically on the challenges)

○ "Performance Matters" by Emery Berger
■ https://www.youtube.com/watch?v=r-TLSBdHe1A

○ CppCon 2016: Chandler Carruth “High Performance Code 201: Hybrid Data Structures"
■ https://www.youtube.com/watch?v=vElZc6zSIXM

18

https://www.youtube.com/watch?v=WDIkqP4JbkE
https://www.youtube.com/watch?v=rX0ItVEVjHc
https://www.youtube.com/watch?v=BP6NxVxDQIs
https://youtu.be/nmIJqiOtWSs?t=948
https://www.youtube.com/watch?v=r-TLSBdHe1A
https://www.youtube.com/watch?v=vElZc6zSIXM

(Aside) Compiler Optimizations

● Compilers aren’t really a pattern but a great place to look
for ‘themes’ in how to write fast code.

○ It’s good to be familiar with compiler optimizations so you know these
themes.

■ (It will help you hand tune code as well)
○ It’s good to be familiar with compiler optimizations so you know what

they will do with certainty for you
○ Run the different optimization levels is a good skill for new

programmers to know about.

19

https://en.wikipedia.org/wiki/Optimizing_compiler

https://en.wikipedia.org/wiki/Optimizing_compiler

Goal(s) for today

20

What you’re going to learn today

● Today this talk is a ‘grab-bag’ of
optimization design strategies that
may (or may not) improve the
performance of your code.

○ At the least, you’ll know a few strategies
that exist and that you can try to apply
to your code today!

Pretend these seats are filled :)
https://pixnio.com/free-images/2017/03/11/2017-03-11-16-47-11-550x413.jpg

21

https://pixnio.com/free-images/2017/03/11/2017-03-11-16-47-11-550x413.jpg

22

Warning -- this talk does include occasional performance numbers.
They are very small ‘microbenchmarks’ for learning.

Please validate on your architecture on data sets relevant to your program

Rated ‘E’ For Everyone!

(Yup, let’s just do our best to make C++ fun
for everyone involved)

E

Optimization Patterns
(Or really strategies/trade-offs)

23

Optimization Patterns/Strategies/Trade-offs (1/2)

24

● ‘Patterns’ are ‘blueprints’ or ‘recipes’ that might help solve a problem
● When it comes to optimizations, I think there are a few strategies that can be

useful
○ It’s probably more accurate to however describe these as ‘strategies’ or ‘trade-offs’ for

obtaining more of something (where ‘more’ today is usually faster execution).
● How I determine a pattern, needs further academic formalization -- I’m not

necessarily looking for bit hacks (e.g. a*=2 versus a << 2)
○ But rather opportunities where I am trading space for time.

Optimization Patterns/Strategies/Trade-offs (2/2)

25

● ‘Patterns’ are ‘blueprints’ or ‘recipes’ that might help solve a problem
● When it comes to optimizations, I think there are a few strategies that can be

useful
○ It’s probably more accurate to however describe these as ‘strategies’ or ‘trade-offs’ for

obtaining more of something (where ‘more’ today is usually faster execution).
● How I determine a pattern needs further academic formalization -- I’m not

necessarily looking for bit hacks (e.g. a*=2 versus a << 2)
○ But rather opportunities where I am trading space for time.

Let me summarize this for
you in the next slide(s)

(Note: I’ll run through the next
20 or so slides quickly and you
can review them in detail later)

From John Bentley’s Rules of
Performance

26

Next few slides based off of MIT’s Performance Engineering
course and my 2020 Performance Engineering course

Trade-offs

There are a few key trade-offs we can make on data structures:

● Space-for-time
● Time for Space
● Space and Time

As I sometimes say, “Computer Science is all about understanding trade-offs” -
Mike

● (And sometimes--you are lucky enough to get both space and time benefits!)

27

Modifying Data - Space-for-time | Data Structure Augmentation (1/2)

● You can add information to a data
structure to make common operations
faster

○ e.g. Singly Linked List ‘append’
○ Normally appending requires walking the

entire linked list and appending at the end of
the linked list a new node

○ Can be spend up by adding a ‘tail’ pointer to
directly access the tail

28

Modifying Data - Space-for-time | Data Structure Augmentation (2/2)

● You can add information to a data
structure to make common operations
faster

○ e.g. Singly Linked List ‘append’
○ Normally appending requires walking the

entire linked list and appending at the end of
the linked list a new node

○ Can be spend up by adding a ‘tail’ pointer to
directly access the tail

■ Small memory cost overall of
maintaining one additional pointer

29

Modifying Data - Space-for-time | Store Pre-computed Result (1/3)

● The example on the right shows
computing the ‘nth’ fibonacci number

○ And we compute the result multiple times
throughout our program

○ This operation costs O(2N) time
■ (or about 10 seconds on my

machine running this program
■ The reason is we are recomputing

the same results frequently.

30

Modifying Data - Space-for-time | Store Pre-computed Result (2/3)

● We can speed up Fibonacci by caching the
result (Memoization)

○ This optimization works because we:
■ Have a generally expensive function
■ The argument space is relatively small (1

argument of integer type)
■ Function has no side effects
■ Function is deterministic

● Drumroll for the result....

31

Modifying Data - Space-for-time | Store Pre-computed Result (3/3)

● We can speed up Fibonacci by caching the
result (Memoization)

○ This optimization works because we:
■ Have a generally expensive function
■ The argument space is relatively small (1

argument of integer type)
■ Function has no side effects
■ Function is deterministic

● Drumroll for the result....

32

Modifying Data - Time-for-Space | Packing/Compression

● Reduce space of data by storing processed results
○ e.g. Data compression(e.g. .zip, .rar) by eliminating repetitions (LZ77)
○ Just a cool example: https://www.youtube.com/watch?v=2NBG-sKFaB0

● Useful on embedded devices for example
● Or if you are trying to limit bandwidth usage on networked applications
● Other practical tips

○ Use smaller data sizes
■ i.e. If your range is only 0-255, use a char not an ‘int’ --

● (Aside: very common use case for storing RGB color values for instance, and
frequently I see folks use ‘int’)

33

https://towardsdatascience.com/how-data-compression-works-exploring-lz77-3a2c2e06c097
https://www.youtube.com/watch?v=2NBG-sKFaB0

Modifying Data - Time-for-Space | Interpreters

● e.g. Python
○ It’s an interpreted language (reads byte

code)
○ No need to generate binaries (.o, .exe,

etc.) files, just need the source code!
○ The language thus describes the

computation, no need to store opcodes
● Does not have to be a full

language either
○ Could be reading in data from a file

during run-time for example as
opposed to storing in the binary.

34

Modifying Data - Space-and-Time | Packing (1/2)

● We try to store (or encode) more data into a machine word
○ Why does it make things faster?

■ This results in less ‘fetches’ to memory for data.
■ (This is also more space efficient!)

● Here’s an example using ‘bit fields’ in C.

35

(Slight caveat, that compiler may ‘pad’ struct to align it better to say 32-bits)

Modifying Data - Space-and-Time | Packing (2/2)

● We try to store (or encode) more data into a machine word
○ Why does it make things faster?

■ This results in less ‘fetches’ to memory for data.
■ (This is also more space efficient!)

● Here’s an example using ‘bit fields’ in C.

36

(Slight caveat, that compiler may ‘pad’ struct to align it better to say 32-bits)

Second caveat--decoding (unpacking) may take more time--in
which case the optimization may involve more work if you have
to decode before using this data.
More: https://compileroptimizations.com/category/bitfield_optimization.htm

https://compileroptimizations.com/category/bitfield_optimization.htm

Modifying Data - Space-and-Time | SIMD

● Single Instruction Multiple Data
○ Execute a single operation on multiple

data items
○ Both faster and less storage

● Can be used
○ If same operation is used on all data

items.
○ (We’ll explore this a bit more later in the

course!)

37

Modifying the Code Structure

38

Modifying Code

There are a few key trade-offs we can make on how we structure our code:

● Loops
● Logic
● Functions (Procedures)
● Expressions
● Parallelism

○ (We’ll discuss in future lecture as they are more architecture specific)

Some of these are common enough, our compilers can actually assist us as well!

39

Modifying Code | Loops

● Loops are especially important to optimize?
● Why--because we spend so much of our time executing in loops
● Let’s look at a few optimizations within loops

○ Code Motion
○ Sentinel Loop Exit Test
○ Loop Unrolling
○ Partial Loop Unrolling
○ Loop Fusion

40

Modifying Code | Loops -- Code Motion (1/3)

● Move code outside of loop that does not need to be recomputed.
○ More on lazy code motion: https://www.cs.cornell.edu/courses/cs6120/2019fa/blog/lazy-code-motion/)

41
approx_pi() is used to generate some work for the benchmark, not because I don’t like writing 3.1415

https://www.cs.cornell.edu/courses/cs6120/2019fa/blog/lazy-code-motion/

Modifying Code | Loops -- Code Motion (2/3)

● Move code outside of loop that does not need to be recomputed.
○ More on lazy code motion: https://www.cs.cornell.edu/courses/cs6120/2019fa/blog/lazy-code-motion/)

42

Careful however! Experimental results show code motion made
this example slower!

Why could this be?

approx_pi() is used to generate some work for the benchmark, not because I don’t like writing 3.1415

https://www.cs.cornell.edu/courses/cs6120/2019fa/blog/lazy-code-motion/

Modifying Code | Loops -- Code Motion (3/3)

● Move code outside of loop that does not need to be recomputed.
○ More on lazy code motion: https://www.cs.cornell.edu/courses/cs6120/2019fa/blog/lazy-code-motion/)

43

Careful however! Experimental results show code motion made this example slower!

Why could this be?
● Memory fetches (reads of variable) might be more expensive!

○ Actual computation is thus not that costly to perform each iteration (sqrt, or some
other operation may be however)

● We need to see the assembly if the compiler would actually perform this optimization!

https://www.cs.cornell.edu/courses/cs6120/2019fa/blog/lazy-code-motion/

Modifying Code | Loops -- Sentinel Loop Exit Test

● Exiting early is another way to save on performance--no need to continue
iterating through the entire collection when a value is found.

44

Modifying Code | Loops -- Loop Unrolling (elimination of the loop)

● Small loops can be ‘unrolled’ to
avoid comparison computations.

○ Generally something the compiler
will figure out for you--but you can
control this by doing it yourself.:w

45

Modifying Code | Loops -- Partial Loop Unrolling

● A similar idea where we can
partially unroll the loop

○ Can be especially powerful when
combined with SIMD

46

Modifying Code | Loops -- Loop Fusion

● We can merge loops together that are
otherwise performing independent
computations.

47

Modifying Code | Logical Expression - Strength Reduction

● Occasionally we can make a better substitution that logically gives us the
same control flow

48

sqrt(x) > 0 x !=0

sqrt(x*x + y*y) < sqrt(a*a + b*b) x*x + y*y < a*a + b*b

ln(A) + ln(B) ln(A*B)

sin(x)*sin(x) + cos(x)*cos(x) 1

Modifying Code | Logic - Reorder Tests (1/2)

● Logical tests should be arranged so that
inexpensive and often successful tests
precede expensive and rarely successful
tests.

49

Modifying Code | Logic - Reorder Tests (2/2)

● Logical tests should be arranged so that
inexpensive and often successful tests
precede expensive and rarely successful
tests.

50

Modifying Code | Procedures - Inlining

● Eliminates function call overhead by
moving small functions into body of
code.

● Also provides further optimization
opportunities for compilers to perform
after the inlining takes place.

○ Generally speaking this is one of the
biggest optimizations, because we often
(not always) optimize on a function level.

○ https://compileroptimizations.com/category/function_in
lining.htm

51

https://compileroptimizations.com/category/function_inlining.htm
https://compileroptimizations.com/category/function_inlining.htm

Modifying Code | Expression Rules - Constant Propogation

● Simply propagate the result
○ This may also save us on both

time and space of computing and
storing intermediate values.

52

Modifying Code | Expression Rules - Compile-Time Initialization

● If a value is constant, we can
make a compile-time constant

○ We’ll see ‘constexpr’ in C++
● Saves the effort of computation
● This may allow us to perform

further constant propagation
● Again enables further

optimizations!

53

https://www.geeksforgeeks.org/understanding-constexper-specifier-in-c/

https://www.geeksforgeeks.org/understanding-constexper-specifier-in-c/

Vec3 Class
Example of more performance patterns and how to possibly iterate through

optimizations

54

VecN class

55

● So to ground us in some
simple examples to learn
from, let’s start with a class
like this

○ It’s an ‘n-element’ vector where
we have a few member
functions

○ We’ll use a std::vector to store
individual elements.

○ The data structure is also
templated so that we can
consider storing any type.

Optimization Strategy/Pattern #1:
Caching

A run-time space versus run-time trade-off

56

Vec3N Member Functions

● I’ve gone ahead and
implemented three member
functions

57

Recomputation

● It appears I am recomputing
work very frequently
however!

● Question to Audience:
Anyone spot where?

■ (ans: next slide)

58

Recomputation

● It appears I am recomputing
work very frequently
however!

● Question to Audience:
Anyone spot where?

■ I’m constantly calling
components.size() every
iteration of every loop

■ For a ‘print’ function
(which is likely const) why
would I need to do this?

59

Caching

● So here’s the adjustment we
can make before the loop.

○ For vectors of very large ‘n’ this
may make some difference
having ‘len’ directly on the stack
(we’ll have to measure)

● Note: pragmatically -- for a
vector -- .size() is just a
lookup and already optimized
-- this function is probably
‘inlined’.

○ Presumably for a ‘graph’ or
some more complicated linked
data structure traversal it may
be worth performing this specific
optimization. 60

Measuring Optimizations

61

Measurements (1/2)

● So in order to know if our optimization strategy (caching) worked -- we need
to measure each strategy in an experiment

● Here’s an example using ‘time’ running 1_000_000 iterations of add.

62

No optimization -- takes about 0.025 seconds

Caching a bit faster -- perhaps small enough that our
computation is noise?

Measurements (2/2)

● So in order to know if our optimization strategy (caching) worked -- we need
to measure each strategy in an experiment

● Here’s an example using ‘time’ running 1_000_000 iterations of add.

63

No optimization -- takes about 0.025 seconds

Caching a bit faster -- perhaps small enough that our
computation is noise?

Let’s see if we can
tease out more
information from
this using a
different profiler

perf profiler

● We need a more fine grained measurement to try to understand what our
optimization strategy did -- otherwise again it may just be noise.

○ The perf profiler is a well known tool on linux, and your platform may otherwise provide other
useful tools

64
On Ubuntu you can install with something like: sudo apt-get install linux-tools-5.4.0-149-generic (Note: This may change based on your kernel)

Observing Perf

● So from this output, it appears that
we do have:

○ Less instructions executed
○ fewer cpu cycles
○ fewer branches
○ (oddly more branch-misses though!)

65

No optimization

Caching

Perf - was it worth it?

● One of the first
questions we should
have even asked was if
it was worth
complicating our code

○ (i.e. remember Knuth’s
warning?)

● Stepping back, we can
generate a ‘perf report’
by ‘recording’ execution
of our program.

66

No optimization

Caching

Perf - was it worth it?

● The perf report tells us
where we spent our
time

● At first glance it looks
like we made things
worse!

○ (i.e. 39.14% is less than
54.21%)

○ (next slide)

67

No optimization

Caching

Perf - was it worth it?

● The perf report tells us
where we spent our
time

● At first glance it looks
like we made things
worse!

○ (i.e. 39.14% is less than
54.21%)

○ Consider however, there
is no call to
‘std::vector<...>size’ on
the next line however

○ Looks like we have
trimmed some time!

68

No optimization

Caching

Was Caching a win?

● Now, sometimes if we’re not
getting a huge performance
boost, we might be solving
the wrong problem or using
the wrong technique.

○ As mentioned on my aside,
caching is probably not a huge
performance boost here.

○ So there’s a different
optimization strategy we can try

69

Optimization Strategy/Pattern #2:
Compile-Time Computation

A compile-time space versus run-time
computation trade-off

70

Compile-time

● Ultimately we always trade
time and space for
performance

○ But in C++ we can choose to
make that trade-off at
compile-time and run-time as
well!

○ Let’s optimize any computation
by templating our function

■ Afterall, are we going to
change the ‘size’ of the
n-dimensional vector?

● (For this example,
the answer is no)

71

Compile-time

● Observe we now know the
length at compile-time and no
longer have to query the
length at run-time for our
loops

72

Compile-Time Results

● Our fastest result yet!
● And we can try something

else after our realization
that length does not
change

○ (an age old tradeoff...)

73

Compile-time

Optimization Strategy/Pattern #3:
Solve the right problem with the right data

structure
A classic space vs time data structure trade-off

74

Choose the right data structure

● Did we really need the capabilities
of a vector?

○ (Note: I have to be careful here if we
changing the problem)

○ Let’s assume I did not however, and my
domain (e.g. games) usually have
vectors stay the same size (e.g. 3
components) when initialized.

● Note: This is often the best
optimization strategy -- try another
data structure or algorithm

75

Choose the right data structure

● Faster yet again!
○ (And more important -- consistently faster!)

● But there is something bothering me
○ We are spending lots of time in +=

76

(Aside)

● If switching to an array felt like
cheating, I did go back to our
very first example and just switch
to a heap allocated array to see
the difference.

○ results were ‘noisier’ do to the heap
allocations (but sometimes still way
faster) -- so sometimes we like more
stable guarantees on time as well!

77

Optimization Strategy/Pattern #4:
Specialization

A compile-time and space versus run-time
trade-off

78

Specializing functions

● So one optimization strategy we can use is to specialize functions or data
structures

○ This means studying carefully a piece of code, finding the use case, and then determining that
we can hand tune it to be faster.

■ And preferably do the tuning such that that our compiler cannot do better than us!
○ We’re going to take advantage again of compile-time programming to specialize our code.

79

Catch-all case generic case
with no specialization

Specializing functions results

● First observe that we have added a
template specialization avoiding a
loop (i.e. getting into compiler
optimization world)

○ This appears to have reduced overall
time spent in operator+= shown below.

80

*NEW*Specialization

Catch-all case

● From a performance standpoint, I
got relatively good results

○ Perhaps our code layout has changed
enough that we’re not always optimized
however!

○ Perhaps on a larger data structure,
specialization can be more impactful --
and perhap enable other optimizations!

■ We may have even enabled
specializations like this for SIMD to
get further performance.

Specializing functions results

81

Specialization (with array)

Specialization (with vector)

Optimization Strategy/Pattern #5:
Multi-phase initialization

A space versus time trade-off affecting
readability/maintenance

82

Multistage setup

● Consider the example to the right
where we decide we want to use
std::vector again as our underlying
container

○ Often times we have data structures
(including vectors) where it might be
beneficial to setup the data structure in
multiple stages.

■ i.e. reserve memory first, then
setup components

● Note: For this particular pattern --
we probably need to increase length
to something larger to be more
meaningful in the results.

83

Wrapping up VecN Example

84

Wrapping up VecN Example

85

● We’ve played around with a data structure thinking about 5 optimization
strategies

○ Caching
○ Compile-Time Computation
○ Specialization
○ Solve the right problem with the right data structure
○ Multi-phase initialization

● We have also learned how we might investigate if our program is actually
running faster

○ There exist more strategies however that I’d like to share briefly -- and may be discussed in
future talks

More Patterns/Strategies

86

Hinting

87

● Hint on insertion
● Nice example on cppreference

showing how ‘hints’ can be used for
speeding up insertion in maps

○ https://en.cppreference.com/w/cpp/conta
iner/map/emplace_hint

● Consider another example of a list
like data structure where we can
‘skip’ through it for faster
insertion/traversals/searches [e.g.
skip list

https://en.cppreference.com/w/cpp/container/map/emplace_hint
https://en.cppreference.com/w/cpp/container/map/emplace_hint
https://en.wikipedia.org/wiki/Skip_list

Precomputation

88

● C++ Compiler optimizations may do some of this
○ Common subexpression elimination

● Templates are our tool for doing work at compile-time
● C++11 and beyond has constexpr

○ You should try to constexpr as many things as possible.

Lazy versus Eager Evaluation

89

● Eager evaluation is evaluating the result immediately
● Lazy Computation is to delay our computation

○ std::async with std::launch::deferred
○ Multiple part construction of our objects as needed

● Copy-on-Write (COW)
● Consider ‘short-circuit evaluation’ as another way to avoid work that does not

need to be done when ordering conditionals

Batching

90

● Consider in some domains like
computer graphics, you want to
‘batch’ all of the draw calls together

○ (Either through instancing or some other
mechanism)

● More simply -- buffered output is an
example of this optimization

https://learnopengl.com/Advanced-OpenGL/Instancing

https://learnopengl.com/Advanced-OpenGL/Instancing

hashing

91

● Consider that we may want to take some long value (e.g. a long string) and
compute a hash to an integer to reference the object by or otherwise compare
two larger pieces of data.

Anecdote

● Performance is Tricky!
● I have heard on numerous occasions adding a random ‘printf’ to change the

address layout has improved performance by 10+% before.
○ This is in the ‘lore’ in optimization, I first heard about at PLDI at 2013
○ Here’s a stack overflow post, and there exist possibly other notes

■ https://stackoverflow.com/questions/42358211/adding-a-print-statement-speeds-up-code
-by-an-order-of-magnitude

92

https://stackoverflow.com/questions/42358211/adding-a-print-statement-speeds-up-code-by-an-order-of-magnitude
https://stackoverflow.com/questions/42358211/adding-a-print-statement-speeds-up-code-by-an-order-of-magnitude

And that’s all folks!

● Optimization is fun, and it comes with
many trade-offs

○ It’s better to say there are ‘strategies’
versus ‘patterns’ -- the reality is we have
lots of strategies to choose from versus
cookie cooker solutions, and optimizing is
often very iterative.

○ (Slides and code will be available for this
talk)

● Make sure to go read the original
Knuth paper so you can tell folks that
you know the full quote! (i.e.
optimization is not really the root of
all evil) :)

93

Optimization Design
Patterns

94

Thank you
Italian C++!

12:15-13:05, Sat, 10th June 2023

50 minutes | Introductory Audience

Social: @MichaelShah
Web: mshah.io
Courses: courses.mshah.io
YouTube:
www.youtube.com/c/MikeShah

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah

Thank you!

95

Extras and Notes

96

Outline

● Introduction and when to optimize code
○ How to time your code
○ Brief discussion on timers and using a profiler

● Optimization Design Patterns Introduction
○ Design Time versus space tradeoffs
○ Patterns: Precomputation, lazy versus eager evaluation, batching, caching, specialization, hinting,

hashing, and compiler optimization levels.
■ Each pattern will have 1 or more examples in Modern C++ with a quickbench (or equivalent)

benchmark.
■ Will discuss the time versus space tradeoff (and in some cases the debuggability or lack of

debuggability of the code.)
● Depending on allocated time slot, will discuss other possible patterns like how to

choose the correct 'chunk' of data to look at, cache-aware algorithms, and where to
look further.

● Conclusion: Summary of what was discussed and how to measure.

97

